REACTIVITY OF THE 1-t.BUTYLTHIO-3-METHOXY-1-ALKENES TOWARDS METALATING AGENTS, I.

REGIOSELECTIVE DEPROTONATION AT EITHER ONE OF THE TWO OLEFINIC SITES OF THE Z-ISOMERS

C. Bibang Bi Ekogha, O. Ruel, S.A. Julia *

E.R. 12 du C.N.R.S., Laboratoire de Chimie, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France

<u>Summary</u>: THF solutions of the title Z-isomers (with the exception of the propenyl compound) at -78° produce either (i) the 1-metalated derivatives when treated with potassium t.butoxide and n.butyllithium or (ii) the 2-lithiated derivatives when sec.butyllithium is the metalating agent. Both metalated derivatives become new equivalents of the hypothetical anions I and II respectively.

Previous work in our laboratory has shown that various 1-t.butylthio-1(Z)-alken-3-ols $\underline{1}$ are available through nucleophilic trans addition of 2-methyl-2-propanethiol to 1-alkyn-3-ols $\underline{1}$. As these compounds $\underline{1}$ and other Y-hydroxy- α , β -ethylenic sulfides can be readily hydrolysed into the corresponding α , β -unsaturated aldehydes $\underline{2}$, $\underline{3}$ and the acidity of the α -proton of vinyl sulfides is well known $\underline{4}$, it seemed worthwhile to investigate a method for converting $\underline{1}$ into the acyl-anion equivalents.

In a previous study, the 1-t.butylthio-3-methyl-1(Z)-buten-3-ol treated first with potassium hydride and then with n.butyllithium in THF at -78°, readily furnished the corresponding $K^{\dagger}Li^{\dagger}$ dianion; but the secundary 1-t.butylthio-1(Z)-alken-3-ols gave poor to moderate yields 3 .

More rewarding results were obtained starting with the methoxy-derivates 2^{-5} . Addition of a solution of n.butyllithium in hexane to a cooled (- 78°) solution of 2^{-5} and potassium t.butoxide in THF resulted in a rapid metalation (15 min). As expected, this metalation occurred with retention of the double bond configuration, as indicated by the recovery of the unchanged Z-starting compound 2^{-5} after protonation of the carbanion 3^{-5} . Reaction of the carbanions 3^{-5} , with various alkylating species (Table I) afforded the substituted compounds 4^{-5} . As 4^{-5} as 4^{-5} and 4^{-5} can be hydrolysed with methyl iodide in wet acetonitrile 4^{-5} at reflux to yield the ketones 4^{-5} , the carbanions 4^{-5} may be viewed as the conjugated carbonyl anion equivalents I.

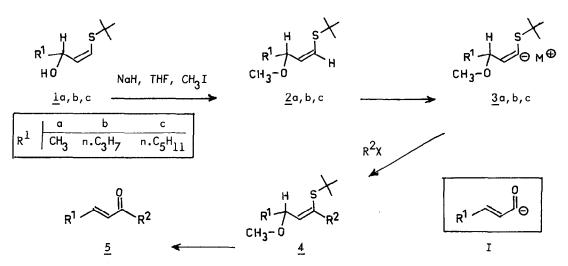


Table I

Substrate	R ² X	Product	Yield %	Ketone	Yield %
<u>2</u> a	сн ₃ он	<u>2</u> a	(99)		
	CH3I	<u>4</u> aa	(98)		
	n.C ₄ H ₉ I	<u>4</u> ab	68	<u>5</u> aa	51
	n.C ₄ H ₉ I (CH ₃) ₃ SiCl	<u>4</u> ac	(97)		
<u>2</u> b	CH3I	<u>4</u> ba	(98)		
	n.C ₄ H ₉ I	<u>4</u> bb	60	<u>5</u> ba	56
	n.C ₄ H ₉ I (CH ₃) ₃ SiCl	<u>4</u> bc	(96)		
<u>2</u> c	СНЗІ	<u>4</u> ca	(99)	<u>5</u> ca	73
	(CH ₃) ₃ SiCl	<u>4</u> cb	62		

The values in brackets are the yields of crude products whose purity is ensured by spectral data.

When treated with sec.butyllithium in THF: HMPA (9:1) at -78° during 45 min 8 followed by methyl iodide, the vinyl sulfide $\underline{2}$ c gave only 41% of the alkylated compound $\underline{4}$ ca, the remainder being the unchanged starting compound. Repeating the same experiment without HMPA during 15 min surprisingly gave the 2-substituted product $\underline{7}$ ca (98%). In the same way, the cis vinyl sulfides $\underline{2}$ a,b were converted into the substituted products $\underline{7}$ 5 in good yields. These metalations occurred also with retention of the configuration of the double bond as indicated by the recovery of the uninverted starting compound $\underline{2}$ a after protonation of the organolithium $\underline{6}$ a. Some of the substituted methoxy-vinyl-sulfides

 $\underline{7}$ have been hydrolysed with methyl iodide in aqueous acetonitrile at reflux to yield the α -substituted α , β -ethylenic aldehydes $\underline{8}$. Thus the lithio derivatives $\underline{6}$ can be viewed as the α -carbanions of α , β -unsaturated aldehydes II.

Table II

Substrate	R ² X	Product	Yield % *	Aldehyde	Yield % *
<u>2</u> a	снзон	<u>2</u> a	(98)		
	CH ₃ I	<u>7</u> aa	(99)	ļ	
	(CH ₃) ₂ C=CH-CH ₂ Br	<u>7</u> ab	68	<u>8</u> ab	55
	(CH ₃) ₃ SiCl	<u>7</u> ac	(97)		
<u>2</u> b	CH ₃ I	<u>7</u> ba	(99)	<u>8</u> ba	67
<u>2</u> c	CH ₃ I	<u>7</u> ca	(98)	<u>8</u> ca	74

^{*} The values in brackets are the yields of crude products whose purity is ensured by spectral data.

The striking formation of the lithio-derivatives $\underline{6}$ may have its origin in the transition states ($\underline{9}$ A or B) of the starting Z-sulfides $\underline{2}$. These conformations are obviously favored over the other rotamers ($\underline{10}$ A,B) on account of their $A^{(1,3)}$ -strain. Due to its proximity to the plane of the double bond, the allylic proton (δ : 4.11-4.24 ppm) is regularly deshielded ($\Delta \delta$: 0.5 ppm) relative to the corresponding proton of the l-t.butylthio-3-methoxy-1(E)-alkenes 9,10 . It can be assumed that the initial step in

the lithiation reaction is the coordination of the metalating agent with a lone pair of the oxygen atom; the nearest available proton then suffers a protophilic attack leading to the observed lithio-derivative <u>6</u>. This phenomenon can be considered as a new case of heteroatom-assisted lithiation, which is prevented in the presence of HMPA.

REFERENCES AND NOTES

- 1. O. Ruel, E. Guittet, S. Julia, Tetrahedron Letters, 24, 61 (1983).
- S. Akiyama, S. Nakatsuji, T. Hamamura, M. Kataoka, M. Nakagawa, <u>ibid.</u>, 2809 (1979);
 M. Julia, Ch. Lefebvre, <u>ibid.</u>, in press. We thank Professor M. Julia for communicating their results before publication and many stimulating discussions.
- 3. These results have been presented by one of us (S.A.J.) at the French Chemical Society Meeting (September 14th, 1982).
- 4. See the review "Heteroatom-facilitated lithiations" by H.W. Gschwend, H.R. Rodriguez in <u>Organic Reactions</u>, vol. <u>26</u>, John Wiley & Sons Inc. (1979).
- 5. All new compounds exhibited the expected I.R., N.M.R. (1 H, 13 C) and Mass spectral properties.
- By this means, some ene- and diene-sulfides have been metalated at the olefinic site next to the heteroatom: R. Muthukrishnan, M. Schlosser, Helv. Chim. Acta, 59, 13 (1976); R.H. Everhardus, R. Gräfing, L. Brandsma, Recl. Trav. Chim. Pays Bas, 97, 69 (1978).
- This procedure has been reported for converting thioacetals into the parent carbonyl compounds: M. Fetizon, M. Jurion, <u>J. Chem. Soc. Chem. Comm.</u>, 382 (1972);
 H.-L. Wang Chang, Tetrahedron Letters, 1989 (1972).
- These conditions have been recommended for a complete and rapid conversion of l-methylthio-l-decene into the corresponding l-lithio derivative: K. Oshima, K. Shimoji, H. Takahashi, H. Yamamoto, H. Nozaki, J. Amer. Chem. Soc., 95, 2694 (1973).
- 9. O. Ruel, C. Bibang Bi Ekogha, S.A. Julia, following communication.
- 10. For a similar analysis of the ¹H NMR spectra of the two 2- [(E or Z)-1-propenyl]-1,3-dithianes, see F.E. Ziegler, J.-M. Fang, C.Ch. Tam, J. Amer. Chem. Soc., 104, 7174 (1982).

(Received in France 17 July 1983)